7.6 Surface integrals of vector fields

We learn

- an integral of a vector field F over a parametrized surface
- Interpretation of this integral as flux across the surface
- What an orientation of a surface is
- Some surfaces cannot be oriented
- How a parametrization determines an orientation
- Practice evaluating these integrals

What we can do without:

- Most of the formulas at the end of 7.6, on page 411.
- It is not worth remembering special formulas for surfaces that are graphs, or for spheres.

The definition

We take

- a vector field $F: R \wedge 3->R \wedge 3$
- a parametrized surface

$$
\text { Phi : D }->\text { R^3 with } \operatorname{Phi}(\mathrm{D})=\mathrm{S}
$$

We define what the book calls the surface integral of F over Phi. I would prefer to call it the integral of the flux form of F, or the flux integral of F.

$$
\iint_{\Phi} F \cdot d S=\iint_{D} F \cdot\left(T_{u} \times T_{v}\right) d u d v
$$

Later, when we know what an orientation of S is, we might write:

$$
\iint_{S} F \cdot d S
$$

Example:
Find the flux of the vector field $F(x, y, z)=(y z, x \wedge 2, x \wedge 2 y z)$ across the halfcylinder
Phi(theta, $z)=(2 \cos$ theta, $2 \sin$ theta, $z)$

$$
0 \leq \text { theta } \leq \pi, \quad 1 \leq \mathrm{z} \leq 2
$$

$$
\begin{aligned}
& T_{\theta}=(-2 \sin \theta, 2 \cos \theta, 0) \\
& T_{2}=(0,0,1) \\
& T_{\theta} \times T_{z}=(2 \cos \theta, 2 \sin \theta, 0) \\
& \text { The flex is } \\
& \int_{1}^{2} \int_{0}^{\pi}\left(2 \sin \theta z, 4 \cos ^{2} \theta, 4 \cos ^{2} \theta 2 \sin \theta z\right) . \\
& \qquad(2 \cos \theta, 2 \sin \theta, 0) d \theta d z
\end{aligned}
$$

Answer 16 / 3

What does it mean?

$$
\iint_{D} F \cdot\left(T_{u} \times T_{v}\right) d u d v
$$

Let

$$
n=\frac{T_{u} \times T_{v}}{\left\|T_{u} \times T_{v}\right\|}
$$ be the an it normal vector

$$
=\iint_{D} F \cdot \frac{T_{u} \times T_{v}}{\left\|T_{u} \times T_{v}\right\|}\left\|T_{u} \times T_{v}\right\| d u d v
$$

$$
=\iint_{D} F \cdot \underline{n}\left\|T_{u} \times T_{v}\right\| d u d v=\iint_{S} F_{-} \cdot \underline{n} d S
$$

Pre-class Warm-up!!!
The picture on the left appeared at the end of class on Friday. Was it intended to help us understand
a. how to set up an integral
b. how to find the area of a surface
c. what the flux of a vector field is
d. why the the integral computes the flux of the vector field across the surface
e. none of the above.
-scalar integral

The second half of section 7.6: Orientations

We learn:

- what is an orientation?
- Descriptions like "the normal points out".
- A parametrization determines an orientation
- Terminology: consistent or compatible with the orientation
- Unit normal
- We can only do flux integrals on orientable surfaces.
- Theoretical things, not proved: the integral does not depend on the choice of parametrization, provide it is consistent for the orientation.
- We don't need theorem 5 or Gauss's law of the special formulas that arise when the surface is a graph.
- Pages 410 and 411 we only need 1 a and 1 b.
(a)

Orientation of surfaces

Definition: An orientation of a surface S is a continuous choice of normal vector valid for all of S.
Example: Cylinder
There a two onewtetrons: ore pointing in, ore pointing rut.

Some surfaces don'f have an onentation.
the Möbcus
strip

S is onentable of it has an mentation

Parametrization s Phi : D $->$ R^3 determine orientations.

$$
\begin{aligned}
& \text { Sphere: } \Phi(\theta, \phi)=(\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi) \\
& T_{\theta}=(-\sin \phi \sin \theta, \sin \phi \cos \theta, 0) \\
& T_{\phi}=(\cos \phi \cos \theta, \cos \phi \sin \theta,-\sin \phi) \\
& T_{\theta} \times T_{\phi}=\left(-\sin ^{2} \phi \cos \theta,-\sin ^{2} \phi \sin \theta,-\sin \phi \cos \phi\right)
\end{aligned}
$$

This gives the oventation pointing in.
Often we want it
 pointing sol
If we did $\Phi(\phi, \theta)=$ same formula we get the out orientation.

Cylinder

$$
\Phi(\theta, z)=(\cos \theta, \sin \theta, z)
$$

$$
T_{\theta}=(-\sin \theta, \cos \theta, 0)
$$

$$
T_{2}=(0,0,1)
$$

$T_{8} \times T_{2}$ points
out.

Cone

$$
\Phi(r, \theta)=(r \cos \theta, \sin \theta, r)
$$

Does the orientation determined by Phi point up or down?
$\sqrt{ }$ a. Up
b. Down
c. Neither

Example.
Find $\iint_{-} S F \cdot d S$ where $F(x, y, z)=(0,0, z)$ and S is the part of the cone $z=\sqrt{ } x^{\wedge} 2+y^{\wedge} 2$ where $z \leq 1$, oriented by a downward pointing normal.

Solution.
Two possibilities

1. do the usual calculation using $\Phi(r, \theta)=(r \cos \theta, r \sin \theta, r)$ and take minus the answer we get
2. Work with the parametrization

$$
\Phi_{1}(\theta, r)=(r \cos \theta, r \sin \theta, r)
$$

